Spaces without Large Projective Subspaces.
نویسندگان
چکیده
منابع مشابه
BANACH SPACES OF POLYNOMIALS AS “LARGE” SUBSPACES OF l∞-SPACES
In this note we study Banach spaces of traces of real polynomials on R to compact subsets equipped with supremum norms from the point of view of Geometric Functional Analysis.
متن کاملLarge caps in projective Galois spaces
If the underlying field is F2, the answer is easy: AG(n,2) is itself a cap of 2n points and it forms up to projective equivalence the unique largest cap in PG(n,2). Assume therefore we work in PG(n,q) or AG(n,q) for q > 2. The canonical models for caps are quadrics of Witt index 1. They yield (q+1)-caps in AG(2,q) (and in PG(2,q)) and obviously these ovals are maximal for odd q. In odd characte...
متن کاملProjective embedding of projective spaces
In this paper, embeddings φ : M → P from a linear space (M,M) in a projective space (P,L) are studied. We give examples for dimM > dimP and show under which conditions equality holds. More precisely, we introduce properties (G) (for a line L ∈ L and for a plane E ⊂ M it holds that |L ∩ φ(M)| 6 = 1) and (E) (φ(E) = φ(E) ∩ φ(M), whereby φ(E) denotes the by φ(E) generated subspace of P ). If (G) a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MATHEMATICA SCANDINAVICA
سال: 1965
ISSN: 1903-1807,0025-5521
DOI: 10.7146/math.scand.a-10766